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We consider solving three-dimensional electromagnetic problems in parameter
regimes where the quasi-static approximation applies, the permeability is constant,
the conductivity may vary significantly, and the range of frequencies is moderate. The
difficulties encountered include handling solution discontinuities across interfaces
and accelerating convergence of traditional iterative methods for the solution of
the linear systems of algebraic equations that arise when discretizing Maxwell’s
equations in the frequency domain. We use a potential-current formul&tiagn (i)
with a Coulomb gauge. The potentifisand¢ decompose the electric fiell into
components in the active and null spaces of ¥he operator. We develop a finite
volume discretization on a staggered grid that naturally employs harmonic averages
for the conductivity at cell faces. After discretization, we eliminate the current and
the resulting large, sparse, linear system of equations has a block structure that
is diagonally dominant, allowing an efficient solution with preconditioned Krylov
space methods. A particularly efficient algorithm results from the combination of
BICGSTAB and an incomplete LU-decomposition. We demonstrate the efficacy of
our method in several numerical experimentsy 2000 Academic Press

Key Words: vector potential; Helmholtz decomposition; Coulomb gauge;
Maxwell’s equations; solution discontinuities; finite volume; Krylov space meth-
ods; preconditioning.

1. INTRODUCTION

Fast, accurate solutions of 3-D electromagnetic equations are required to simulate
sponses from geophysical surveys and also for solving the electromagnetic inverse prob
Difficulties arise in attempting to find corresponding three-dimensional numerical solutiol
These difficulties include handling regions of (almost) vanishing conductivity, handling d
ferentresolutions in different parts of the spatial domain, handling the multiple scale leng
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over which the physical properties can vary, and handling regions of highly varying cond
tivity, magnetic permeability, or electrical permittivity where jumps in solution propertie
across cell interfaces may occur.

We consider Maxwell’s equations in the frequency domain over a frequency range wh
excludes high frequencies (in a sense to be made more precise following (1) below).
permeability is assumed constant. The piecewise smooth conductivity streiqiargtions
the spatial domain into disjoint subdomains and, thus, normal components of the ele
field may be discontinuous across interfaces between distinct materials. We consider ¢
main involving both ground and air [12, 22, 25]. This particular model is used in geophysi
surveys where artificial or natural sources induce currents in conducting bodies.

A major obstacle in modeling such phenomena is that the conductivity in the air ess
tially vanishes. From an analytic perspective, the specific subset of Maxwell's equati
used typically forms an almost-singular system in regions of almost-vanishing conductiv
Even in the ground (where the conductivity is not close to vanishing), the resulting diff
ential operator is strongly coupled and not strongly elliptic [7]. Finding effective metho
for solving the algebraic equations arising from careful, conservative discretizations
Maxwell’s equations (as in [18, 25, 29]) has proved elusive in practice.

In [1], we addressed this concern by employing a Helmholtz decomposition first, usin
potential formulation with a Coulomb gauge to obtain a system of strongly elliptic, weak
coupled differential equations. This change of variables (usedin[4, 12, 21, 24]among oth
splits the electric field into components in the active and null spaces 6f theperator.
Using a vertex-based discretization on a simple non-staggered grid, the resulting la
sparse algebraic systems were solved using preconditioned Krylov space methods [2,
Combining BICGSTAB and a preconditioner comprising an incomplete LU-decompositi
of the dominant system blocks resulted in a particularly efficient algorithm.

The discretization method in [1] is sufficiently accurate ifs continuous or contains
jumps that are small in magnitude. In the more general case which allows for a significal
discontinuous conductivity profile, it is difficult to devise an accurate discretization th
preserves the benefits of the rapid solution techniques for the linear equations. This I
us to introduce the current density into the equations as an ultimately intermediate varia
the new analytic system is then discretized using a finite-volume technique on a stagg
grid. The method is akin to mixed-hybrid finite element methods [6, 23, 33].

A staggered discretization for Maxwell’s equations (originally proposed by Yee [29, 3¢
has been considered in contexts similar to ours in [22,1286]this discretization, the
Cartesian components of the electric fi@dand the magnetic fielth are represented at
distinct locations on the spatial grid (cf. [5]). Given a rectangular, three-dimensional gr
the components dE prescribed in [22, 25] are parallel to the edges of the cells and tt
components oA are orthogonal to the centers of the faces of the cells. This avoids t
need to doubly define the (discontinuous) componenEiafthe normal directions to cell
faces because the componentEafised in this representation are tangential to the face
of the cells. However, when using a potential formulation to speed up the iterative solut
of the algebraic equations, this placement of the field values becomes cumbersome.
complication is further increased if permeability is allowed to vary.

1we call it the Yee discretization, or method, even though Yee originally proposed his method for the ti
domain problem.
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Thus, we develop a finite-volume method on a staggered grid using vector potenti
scalar potentials, and generalized current densities as dependent variables. In Secti
we develop the corresponding system of partial differential equations (PDES). This sys
is amenable to discretization using a finite-volume technique described in Section 3.
this discretization, the values of the components of the vector fields are associated witt
centers of the faces of the cells and the values of the scalar potential are associated witl
centers. The resulting scheme naturally employs harmonic averages for the condaictivi
on cell faces; it closely relates to a careful, efficient extension of the traditional Yee mett
and retains various conservation properties for the fields.

We briefly describe the application of Krylov space methods to solve the system
algebraic equations in Section 4, complementing the description and numerical tests in
Related methods were considered in[10, 11]. We use incomplete LU-decomposition, wt
is a powerful preconditioner in the case of diagonally dominant linear systems. The syste
diagonal dominance is a direct consequence of our analytic formulation.

Finally, we present the results of numerical experiments in Section 5. We construc
synthetic example in 3D and demonstrate the accuracy of the method, even with I
jump discontinuities in conductivity and even with coarse grids. We also demonstrate
rather significant efficiency gain of our method by comparing it to a method closer
the traditional Yee discretization using similar preconditioned Krylov space methods |
without the potential reformulation [25]. As a rough general indication, our experimen
MATLAB code requires about two minutes on a SPARC 10 workstation to solve the probl
on a 32 grid. We also test the code on a geophysical problem and compare our results \
those from another code.

We emphasize our view that the problem reformulation, the derivation of a suitable d
cretization scheme, and the design of a fast iterative solver are all parts of one de:
process. Thus, the Helmholtz decomposition followed by a careful discretization allows
construction of a simpler preconditioner for a standard Lanczos-type iteration. Others h
chosen to discretize (1) (or the corresponding time-domain equations) first, and then ma
ulate the discrete equations [3, 5, 9], possibly with the view of designing a fast solver [1
Inthe present setting our modular approach yields a complete scheme for fast 3D simula
which is easy for scientists and engineers to understand and implement.

2. FORMULATING THE ELECTROMAGNETIC PROBLEM

With a time-dependenaet, Maxwell’s equations in the frequency domain are

V xE—1ouH =0, (1a)

V xH— (0 —lwe)E =75, (1b)
V. (eE) = p, (1c)

V.(uH) =0, (1d)

wherepu is the magnetic permeability,is the electrical permittivity]® is a known source
current density, ang is the (unknown) volume density of free charges. In our preser
work, we assume that > 0 is constant and known. The physical propertiesO ando >0
can vary with position and are assumed bounded and piecewise smooth. We restric!
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frequency range under consideration so fhab?L? « 1, whereL is a typical length scale.
The electric fielde and the magnetic fiel#l are the unknowns in the forward modeling
equations (1a, b), with the charge dengitgiefined by (1c).

The system (1) is defined over an unbounded domain. However, in practice, we ass
that (1) holds in a bounded subdomainc IR3, and some combination of Dirichlet and
Neumann boundary conditions (BCs) is imposed on the bouridanf 2. It is well known
that the existence of a unique, piecewise smooth sol@isnguaranteed for a sufficiently
smooth source and a wide variety of such BCs [5, 20, 30]. We thus assumg tzet
bounded second derivatives everywhere except in directions normal to material interfa
and return to the choice of BCs towards the end of this section and in Section 5.

Often in the literature, (1a) is divided hy, the V x operator is applied, and (1b) is
substituted into the resulting expression to obtain a second-order system of PDEs fol
electric fieldE, namely

Vx (" IV xE) — 1w6E = 1035, )
where
0:=0 — lwe.

However, for reasons indicated in Section 1, we decompast componenté (spanning
the active space of thé x operator) and/¢ (spanning the null space of thex operator).
The resulting decomposition 2 is

E=A+Vg, (3a)
V-A=0, (3b)

where (3b) is known as theéoulomb gauge conditiofi2]. The choice of Coulomb gauge
for our work is important because it greatly simplifies the differential equations to be solv

To get an idea of how smooth these potential fields are, consider the conditeondp
must satisfy at the interface between distinct conducting media. We find these condition
integrating over infinitesimal Gaussian pill-boxes or rectangular loops at the interface (s
e.g., [30]). With @y, ¢1, 61, €1) and @2, ¢2, 62, €2) denoting values of the corresponding
guantities on opposing sides of the interface, we have

nx (A — Ay =0, (4a)

n-(Ar—Az =0, (4b)

n-(e1Vpr — €2Ve2) = ps, (4c)

N-(61(A1 + V1) — 62(A2 + Vo)) = 0, (4d)

wheren is a unit vector normal to the interface apgdin (4c) is a surface charge density.
We define theyeneralized current densityto be

J=6E = (0 — lwe)E. (5)

The conditions (4) and the differential equations (1) imply tha is continuous, bu - n

is not. Moreover,f,;—f]j inherits the discontinuity oE - n, while A is continuous, and both

V - AandV x A are bounded (cf. [14]).
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We can substitute (3a) into (2), and for constanwe obtain
VXVXA—-IousA+ Vo) =1oud®.
SinceA is divergence-free,
VxVxA=-V2A inH Q)3 (6)

(see Remark 3.8 and Theorem 3.5 in [14]). Using this identity and substituting (3b),
obtain

VA + 10ué (A + V) = —1ouds. 7)

Notice we cannot substitulé x V x E = —V2E 4+ V(V - E) directly because the fieH is
discontinuous in its normal component across interfaces between media with different
ductivities. Also, ifu varies, then (6) cannot be applied and (7) does not hold. A generaliz
tion can be found [16]; however, the method proposed here is particularly fast, taking
vantage of the sparsity afforded by the discretization of (7), which is not obtained wunles
is constant.

To get a diagonally dominant system, we can apply the opefatdo (7), thereby
obtaining a diffusion equation f@r (as in [1, 4, 12, 21]). Howeves;A - n ando V¢ - n can
be discontinuous even thouéh n is continuous at an interface. Therefore, differentiating
the components A andoV¢ of J individually should be avoided. We can, however, take
the divergence of at an interface without fear. This yields the (inhomogeneous) system
equations

VA +1opd = —1oud®, (8a)
G5(A+Ve)—J=0, (8b)
V.J=-Vv.J5 (8c)

The introduction of] into (8) is akin to mixed finite element methods [8] which are com:-
monly used for highly discontinuous problems.
Notice, although (3b) is left out of (8), this gauge condition is satisfied by the exa
solution of (8) provided it holds at the boundaries. We avoid discretizing (3b) directly.
A simple set of BCs for the system of PDEs (8) is given by

—(V x A) xnjgg =0, (%99)
A-nlye =0, (9b)
a¢p _
anlae — 0 (9c)
/ $dV =0. (9d)
Q

These conditions yield a unique solutioh, ¢, J) for the system (8), (9). In particular, the
Coulomb gauge condition (3b) is satisfiedinsee [16].
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We use (9) for problems with sources that have compact supp&ribearing in mind
that 2 approximates an infinite domafn)But problems with sources which do not have
compact support (such as in the magnetotelluric case [34]) require other choices of E
See Section 5.

3. DERIVING A DISCRETIZATION

Solving the forward problem is a major bottleneck for electromagnetic inverse problem:
geophysical prospecting [32]. This is the application that motivates us here. For the ens
data inversion, one envisions a 3D tensorproduct grid with the conductivity constant
slowly varying) in each cell, but potentially varying widely between cells. Thus, we consid
here a discretization on such a rectangular grid. For extensions to more complex geome
see [18, 19], or consider mixed finite elements [5, 8, 17].

To derive a discretization for the system of PDEs (8), consider first the grid ir-the
direction. There ard&l, cells and hencély + 1 vertices. These are denoted as

Q= {Xi+1/2 TX12 < Xgj2 < vt < XNg+1/25 i = o,..., NX}, (10&)

with the corresponding dual grid defined as

Q¥:={x:i=0,...,Ny+1}, where
X1/2, i =0
) _ (10b)
X = g (Xi—y2+Xis2), =1 Ne -
XN+1/25 i =Ny+1

The dual grid@‘ gives thex-coordinates of the centers of the cells of the grid. The primar
and dual grid spacings are given by

h; ‘=Xat+1/2 — Xa-1/2 (a= 1/2, 1, 3/2, ..., Ny, Ny + 1/2) (10C)
One-dimensional grids are similarly defined in fh@ndz-directions, respectively yielding

QY (with Ny + 1 points),2? (with N, + 1 points), and the corresponding dual grid¥
andQ? as in (10b). The grid spacing% andhZ are as in (10c). We also define the boxes

Vabe ' =[Xa—1: Xars] X [Yo-1: Yor2] X [Ze-1.Zey1]
Vapel:=hXh{hZ (a=1/2,1,..., Ny +1/2;.b=1/2,1,..., Ny + 1/2;
c=1/2,1,...,N,+1/2)

which are the finite-volumes over which the individual equations of (8) are integrated.
Thus, the domain for the discretization is essentially the grid

QM= Q¥ x QY x Q%

2This idea is similar to the implementation of open BCs in the context of computational fluid dynamic, s
[15, 31].
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TABLE 1
The Discrete Grid Functions: Each Scalar Field Is Approximated by the Grid
Functions at Points Slightly Staggered in Each Cell of the Grid

X ~ AX : . /\X ~ /\X o i
A|+%.J.k A (X'Jr%’yj’zk) Ji+%,1k J (X'+%’yl’zk)
AY ~ AV(X- : Z) v A~ y(x. : )

i-j+:—2l,k nyHi_zl, K Ji.j+%k J i yH%,Zk

z ~ AZ(Xx . z ~ Jz .
Ai,j,k+% A (X" Yis Zk+%) Ji,j,k+% J (X‘ Yis Zk+%)

Dijk ~ P(Xi, Yis Z)

The vertices of2" are the corners oy Ny N, boxes that constitute the cells of the grid
(as seen in Fig. 1). That is, the c#j « is the box with eight corners<(.1, Y1, z.1)
andcenterX;, y;,z) (i=1,..., Ny, j=1,..., Ny,k=1,..., N;). The centers of the six
faces of the celV, j « are the six pointsmi%, Yi» z), (X, Yt z), and ;, y,—,zki%).
Furthermore, within each celf j «, the conductivityr varies smoothly or is constant with
o =0 j k throughout the cell. Howeves;, may be discontinuous between adjacent cells
The permittivitye is represented in the same wayae. withe = ¢ j « throughoutV, j «),
although the variations ia are much less than thosedn Thus, the domain is composed
of blocks of distinct conducting materials.

Having defined the grid, we now identify where the grid functions approximaﬁini;]
and¢ are defined. Basically, both vector fieldsindJ are approximated in each cell using
the approximate values of the normal components of the fields at the center of each f
The scalar fieldp is approximated in each cell using the approximate valug af the
center of the cell. Denoting = (A%, AY, A)T andJ = (3;, 39, ﬁ)T, the locations of the
grid functions are shown in Table 1 and Fig. 1.

To approximate (8c), we integrate at first over the Bbx using Gauss’ divergence
theorem

1 3 1

LJdv = J.nds
IViLikl v IViLikl Javi
'4:._3,.‘.'+%
sz._j,#+%
Di jk
O—'*:-..;f"l’"

Cross-section of
Vi

FIG.1. ThecellV,; along with a cross-section. The c¥|l; x corresponds to a block of conductive material
within whicho ~ o j .
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Using midpoint quadrature on each face to evaluate each of the surface integrals or
right-hand side above, we find the discrete equation corresponding to (8c),

Ji+%,j.k - ‘]i—%,j,k Ji.j+%,k - Ji,j—%,k n Ji,j,k+§ - ‘]i,j,k—%
X y z

y y z z
) S . — S . S — S~
-3k Lji+ik  TLj-1k 1,j.k+3 1, j.k—3

2

=0, (11
h hY h - 4D

where we denotd® = (s*, s¥, s9)T.
Next, consider, say, thhecomponent of (8b), written as

R} —~

9 _ _ +6713x,

axX
i.e., as an equality of possibly discontinuous quantities. Integrating this equation on
line segment from(x;, y;, z) to (Xit1, Yj, Z), we cross a boundary between cells anc
hence encounter possible discontinuitieaian”d%. However, integration is a smoothing
operation, so the result of this integration is well defined. We definedhmonic average
of the conductivity between the neighboring cells by

-1

Xit1
Giv ik = h;‘+§</x 67X, y, z)dx) ) (12a)

If & is assumed to be constant over each cell, this integral evaluates to

e L TR (12b)
Oitdik = M2 26ijk  26i+1jk/)

Then, the resulting approximation for thecomponent of (8b) is

Jx 1.j,k=6i+%’1,k<AiX+%,j,k+w> ) (12c)
i+3

The above derivation using harmonic—rather than arithmetic—averages is natura
our approach upon application of numerical considerations alone (viz. integration rot
quantities). Using harmonic averages as indicated, becomes important in practice w
jumps by a few orders of magnitude in conductivity are present. Harmonic averaging is
natural on physical grounds, as it corresponds to serial, rather than parallel, current |
(see, e.g., [28]).

Using (12c) and similar expressions derived in $heand z-directions, we eliminatd
from (11) and obtain a discrete equation in which the dominant terms all ingolUée
resulting stencil fog has 7 points.

There are two ways to view the procedure of eliminatﬁlg:irst, it is an algebraic
manipulation (a Schur decomposition) which reduces the number of unknowns. Sect
the result of the elimination corresponds to a compact discretization of

V-GV + V- (6A) =—V -5 (13)
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However, this correspondence holds only if the terms on the left-hand side of (13) e
(i.e., if & is smooth; for a similar idea in a different context, see [15]). Our discretizatio
yields a valid approximation for the solution of (8b)-(8c), even if the individual terms i
(13) are unbounded.

It is natural (although not necessary) to defiat the same spatial locations where
is defined, as depicted in Fig. 1. The discretization of the components of (8a) is obtail
using a standard 7-point stencil to approximate the Laplacian operator or through a fi
volume discretization of

—VXVXA+V(V-A) +loud = —1opd®

(see [16]), which yields the same discrete equations. This completes the derivatior

the discretization for a general, tensor-product non-uniform grid. The same finite-volul

arguments are used to determine how Dirichlet or Neumann BCs fit into the stencils n

the boundaries. Our treatment of the BCs follows the one described by Fletcher [13].
In summary, the discretization of (8) on a uniform grid with spadifig- hjy =hf=his

h~ ('A\X-»——Jk—i_'o‘X J+lk+Al+1]k+1+AiX— +AX 5.0— 1k+A|x+ i k=1
—6Aix )+|w,qu+1. Ia)us+ ke (14a)

h™ (A|y+1j+ k+A|yJ+ k+A|yJ+ k+1+AIle+ k+Ai>t]. +A|y]+ k=1
_6A|y]+1k)+lw'u“']|1+ K= Iwuslj+1k, (14b)

h~ (A|Z+1Jk+1 +A| j+Lk+3 +A|1k+3 +A| Lj.k+3 +AIJ 1k+3 +Azjk 1
—6A7 s )+Ia)/LJIJk+ —lops’| s (14c)

h=2 (G141 ju@irsik = k) = Giot ju(@ijk — di-1ik) + G 14 (Dij+1k — Bij k)
|]_7 k(¢|]k_¢|] 1k)+0|1k+1(¢|]k+1_¢ljk) _U|Jk—l(¢ljk_¢|]k 1))

+h™ (0i+§,j,kAi+;,j,k +Gi 41 kA. j+1.k +6i k1 AT, k+d T 6—i_%v1-kAiX—;,j,k
B &i’j_%’kAi)fJ*%»k ~ Ok A e l) = h=i(s! 1+1..k +S| 41k +SIZJ,k+%
S ik TS ik Sike) (14d)
where the components dfcan be eliminated by
ji;Jr%,j,k = h_l6i+%,j,k(¢i+1,j,k - ¢i,j,k) + 6‘i+%‘j!kAix+izl’j’k’ (149)
W = N0k = B0 + 8 A e (14f)
ji\%j_k+% =h™'5; ik @ik — Bijk) + 6i~,i,k+%Aiz,j,k+%' (149)

The introduction of] into the formulation (8) makes it easy to generate a point-wis
accurate approximation to the (possibly discontinuous) electricHelith our discretiza-
tion (14). Usually, the field& and¢ are computed solely for the purpose of calculating
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andH in post-processing; thus, computigglirectly from (3a) (as suggested in [1, 12, 20,
21, 24)) involves a loss of accuracy due to numerical differentiation to obtain a possil
discontinuousv¢. We avoid this loss of accuracy by calculatiﬁngﬂwhich is continuous)
at the grid points wherA is defined using (14e)—(14qg), and then determiringsing (5).
Thus, the electric field can be accurately determined at either side of the boundary, wi
separates media having different conductivities.

3.1. Conservation of Vector Identities and Relationship with Yee's Method

On the (non-uniform) staggered grid, we can define natural discrete difference opera
that involve only “short” difference quotients: - , as used in (11) fo¥ - J; Vj, as used in
(12c), forve, V2, as used in (14), fov2A; andV x p, as used in (16) below. It is then easy
to verify that the following discrete vector identities hold in the grid’s interior, reproducin
the continuous vector identities (cf. [9, 18]):

(VX n)Vh =0, (15a)

(V-n)(V xp) =0, (15b)

Vh(V ) = (V x n)(V xn) = VE, (15c)
V.h®=0= V. Vid =0. (15d)

In electromagnetic modeling, it is common to use Yee's method [35]. As mentioned
the introduction, most implementations of this method define the tangential componen
E along the edges of a grid cell (or a finite volume) and the normal componeHtathe
facial interfaces; see, e.g., [25]. However, this is not a fundamental requirement. In fact,
method is more closely associated with a modification of Yee’s discretization with norn
components oE defined on the cell faces and tangential component$ défined on the
edges. This requires appropriate field substitutions and definitions of conductivity. We
so below and relate the resulting equations to those from our derivation.

Consider Yee's discretization, applied to (1a, b) for a uniform grid as in (14). The plac
ment of the various discrete solution components on the cell is depicted in Fig. 2.

z iyl i1
E'!_}fni—% {?'+'2.':I|+2? +2]
H;_J_j_”
o2 2 @
x
1 3 .
® }_*)‘?‘r s el E&%.,_:L
d-3,
°
z v
: HE ,, | i
e bi L k—3

FIG. 2. Staggered discretization &andH in three dimensions.
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The centered discretization is
YEZ — EZ, —E +EY, ) —1opHX; =0, (16a)
i,j+1,k+1/2 i,j.k+1/2 i,j+1/2,k+1 i,j+1/2,k 2 i, j+1/2k+1/2— %

1 y
M2, iker — B2k — B ko2 T B jkra2) —1ouHY 105 ki12=0, (16b)

h-
h-
h-
h—l

(E
1py y
(Bt jsrok = B jryok — a2 ek T Ebyzin) —1ouHi 10 112k =0, (16c)
y y
(M2 541726 — Bz —y2k — iz ke + Bz ke12)

= Gi+1/21k B2k = Stz k0 (16d)

-1
h (Hi),(j+1/2,k+1/2 - Hi),(j+l/2,k—1/2 - HiZ+l/2,j+1/2,k + Hizfl/Z,jJrl/Z,k)

- y y
— 01, i+12kE 110k = S 41260 (16e)

“1/y y
h™ (H 10 k12 — B2 ken2 — Baajaken2 + B _1/2k01/2)

= 6i,jkr12E k12 = Sjcryz: (16f)

In (16), we have not defined the quantiti®s1)2 j .k, 6i,j+1/2k, andoi j k+1/2, Nor have
we resolved the possible discontinuitiestin n across cells (for exampl&, , , ; , may
have different limiting values in the celf ; « and the celV ;4 j «). We now address both
these points using our previously introduced approach.

1. We can eliminate the componentskbfunambiguously by substituting (16a)—(16c)
into (16d)—(16f). This algebraic elimination corresponds exactly to discretizing the secol
order system (2) i. In particular, itis a compact discretization for each of the componen
of E on the staggered grid.

2. Next, we introduce the decomposition (3). This resolves the ambiguipmthe cell
faces in case of discontinuities and handles the null space &f theperator. The natural
discretization is

B 1ok = Abrzik +h @ik — 91k,

Ejrvak = Aljsyzk +h @1k — 1100,

Efikin2 = Al ka2 + h @i jkrs — 1.0
This leads to the staggered grid definition as in Fig. 1.

Substituting into (16), note that according to (15a), the contributions corresponding
V x V¢ vanish. Further, wesquire

-1 y y
VpAijk=h (Aix+l/2,j,k = Aokt A 2k — Ajo12k
+ A k2 — Aiz,j,k—l/2> =0. (17)

Then, using (15d), we obtain our equations (14) from Yee’s method.
3. Finally, we are able to naturally, and carefully, derive an expressiandorcell faces
using harmonic averages, as in (12).

Remember thatin our method, we do not explicitly impose (17). However, these equati
are consistent with our discretization if the BCs with which the PDE system (8) is equipp
are such that (3b) is satisfied everywhere (as is the case with (9)). In such a case
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discretization yields the same solution as Yee's method with the definition (12) (whi
holds even wheiW ¢ is discontinuous). We have arrived at a correct way of extending Yee
method (16) in order to overcome both the presence of discontinuitiesamd the slow
convergence of iterative methods for the algebraic equations. If the BCs for (8) reprod
(3b) only approximately, then the methods yield different solutions; see Section 5.

4. NUMERICAL SOLUTION OF THE DISCRETE SYSTEM

Even after] is eliminated, the system (8) has four unknown scalar fields defined ove
three-dimensional domain. The resulting discrete system derived in Section 3 is typic
very large and sparse, so we use preconditioned Krylov space methods for its solu
[2, 27]. As in [1], the discretized equations can be written as

1
EH]_ |S_f|_G1 Al b]_
1
on H2 1$G2 || A2 | _ | b2 ‘ (18)
LH; 1$Gs || M bs
o 13 3
DS DS DS L ¢ by

Here,H;, Hy, and Hz are discretizations of the (complex) Helmholtz operat(@s;, G,
Gs)' is a discretization of the operat8t;, (D1, D,, Ds) is a discretization of the operator
V. (S, S, &) is a discretization of the operater(-); and L is a discretization of the
operatorV - (6 V(-)). Inthis caseH;, Hy, andHs are distinct matrices due to the staggerec
grid; this is a drawback compared to [1].

The block structure of the matrix in (18) holds for our staggered discretization (14), but!
for (16), nor for discretizations that directly involve (3b). The diagonal blddksH,, Hs,
andL are discretizations of second-order differential operators and are, therefore, the d
inant blocks of the system. Furthermore, although the system (18) is larger than the sy
arising from the direct discretization of (2), it has roughly the same number of nonze
entries because the discretization of the oper&@ter V x involves 13 points, whereas that
for V2 involves only 7 points.

As in [1], we solve (18) using BICGSTAB with a block incomplete-LU (ILU) precon-
ditioner [2]. A modest improvement can be made by separating the system (18) into
real and imaginary parts, since the imaginary part appears only in the low-order tel
of (1). Furthermore, the real part of the Helmholtz operator corresponds to the dielec
permittivity and the imaginary part corresponds to the conductivity. The result is the ri
system

H. SG -5 -S6G Are bre

DS D§G DS DSG ¢re | _ | Poe (19)
S $G He 3G Aim bim |’

-D§& -D&G D& DSG/ \ém b,

where the matrixH, is the discretization of the 3D Helmholtz operator (which depend
on the permeabilitye, and the frequencyy), S, and S are diagonal matrices that dis-
cretize the three components of the operatar$ andwe(-), andG andD are the discrete
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representations of andV-. In (19), the matrix blocks have the form

He= (W 'Vi+ S, Vi =diag(V, Vi, V2),
ST = diag(Sfx, 37)/7 STZ)v S = diag&)ﬁ &ya SeZ)v (20)
G = (G, Gy, Gy)", D = (D, Dy, D3).

In (20), VS is the (discrete) Laplacian operator for tpgh component of a vector field,
andSp and S, are likewise discrete approximations «f ando |, respectively, on the
appropriate faces of the staggered grd<x, v, 2).

For sufficiently fine grids, the Laplacian blocks are dominant in their respective ro\
and columns, whence the system is diagonally dominant. The convergence of Krylov si;
solversrelates directly to the diagonal dominance of the system (19). For the preconditior
of the blocksH1, Hy, andHs of (18) or (19), we can use ILU(0), i.e., no fill-in allowed.
However, for the block® S, G, which are more complicated due to the discontinuities ir
o, we use ILU with threshold 1G; see [27]. The ILU code we use is taken from [27] as
well.

5. NUMERICAL EXPERIMENTS AND RESULTS

For the calculations reported in this section, we assume the quasi-static approxima
holds, sao"= o asin[1]. The boundary conditions (BCs) are different from (9) because w
attempt to model the magnetotelluric (MT) experiment[32]. This experimentinvolves fiel
driven by a source that has no compact support in an unbounded domain. Upon conside
the approximate problem on a finite doma&nthere are different ways to impose BCs on
the finite domain boundar§$2, when modelling this experiment. For instance, in [E]q
is prescribed, while in [26]H andE are prescribed on different portions of the boundary.

In our modelling, we prescribe BCs directly énand¢ based on their physical inter-
pretation® We assume that there are no charge sources at infinity. Thus, for a sufficier
large rectangular domain of the form

Q:=[—Ly. L] x [-Ly. Ly] x [=L,. L. (21)

¢ arises only from charge accumulation at conductivity discontinuities which are well insi
Q and far from its boundary. Thereforégp |, ~ 0 and correspondingli|yo ~ Alsq.
We require

9

=0 22a
on ’ (223)

aQ

which guarantees a unique decomposition in (3) for a given electric field. In addition, s

oA
X

oA

=0, — =0. (22D)
X==%Ly 8y

y==%Ly

3 Recall from [1] thatg is generated from accumulated charges whilarises from time varying magnetic
fields.
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Corresponding to a plane wave in an MT experiment (which has a source without comy
support) we impose

A|Z=i|_z = g(Xv yv :l:LZ) (22C)

whereg is a known data function.

By fixing ¢ = 0 at one point on the boundary, or alternatively imposing (9d), the PD
system (8), (22) is well posed. Note that (3b) no longer holds preciselybul\|| decreases
rapidly as the domaif is increased.

5.1. A Synthetic Problem

For low-frequency, diffusive problems involving finite discontinuities, we are not awal
of three-dimensional, closed form solutions of the system (8) reported in the literatu
Therefore, we generate a synthetic example that allows us to test many features o
algorithm.

For the model domainwe skt = Ly = L, =1in(21). We define an analytic, quasi-static
conductivity function depending on a parameder

G(X,Y,2) =0(X,Y,2) = Ya(X) Ya(y) ¥a(2), (23a)

_ 1) _ I\
Ya(€) = tanh(a(é + 4)> tanh(a(é 4>> + 100 (23b)

The functiony, in (23b) varies slowly inf1, 1] except neag = £+0.25, wherely| ~ a;
thus, the parametearcontrols the steepness of effective “jumps’sir{see Fig. 3). For G<

where

2.5 T T T T T T T T T

15 a =100 7

a=10

0.5f e 1\ R

0.2 0.4 06 08 1

O -

FIG. 3. The functiony, for various values o& > 0: asa increasesy, becomes steeper.
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a < 1,s is nottoo steep, while fa > 10,7 is effectively discontinuous (like a conducting
block in a nonconducting material). Note tlavaries over 7 orders of magnitude, roughly
from 107 to 8. The directions across whiehvaries rapidly align with the grid.

We next choose an electric field,

(24)

9

£ < —zy @50CHYHZ) 7 @B0CHYHD)  _yy e B0CHY ) > T

Va(X) ' Va(y) Va(2)

Notice ||[E(X, Y, 2)|| — 0 as(x2 + y2 + 72) — oo. On the finite domain boundatE(x, v,

2)|| is small: e.g. fom =100, maxq |E(X, Y, 2)| < 0.09, which we consider an acceptable

source of error. Also, for the grids used, with sufficiently large values(sty,a > 10),E

varies rapidly as if it has a jump discontinuity in the normal (but not tangential) directiot

at the “interfaces” where thanges rapidly. On the other hand, the curdests E varies

rapidly in its tangential components, but not in its normal components at the same interfa
We setu =4 - 107 H/m andg = 0. The diffusion numbe .6 L? ~ 100 is typical in

a geophysical scenario in which the domain includes roughly seven skin depths. For

source term, we now define

J%:=(lopn) IV x V x E — 6E. (25)

The values of 'on block boundaries are evaluated using harmonic averages, as in Sectic

The source in (25) is not physically realistic, as it lacks compact support. However, t

example does provide a good test case approximating a highly discontinuous problem
At this point we can generate the linear system (19) for a given frequeraoyd find

an approximate solutiofn, ¢n)". Unfortunately, we do not have closed-form expression:

for (A, ¢), such that (3) holds. However, we can compute a pseudo-analytical solution

solving on the same grid a similar finite volume discretization for the system

A+ Ve =E, (26a)
V-A=0, (26b)

together with (22a), using the analytic from (24) on the right-hand side of (26). The
differences between the numerical solutions of (19) and (26) are denotddnydé¢.

We present a summary of results in Table 2. In additioiid#| and||3¢||, we provide
18J]l (the difference between the analytic and computed currents)@nd || (the residual
associated with (3b)). These differences are measured in the maximum norm and in
normalized Euclidean 2-norm.

The results in Table 2 show that the solution error generally decreases?like the
grid is refined. Observe that the errors in the current (and therefore in the electric field)
O(h?) becausd is computed point-wise from the discretization of (8b) with second-orde
accuracy. Notice that the convergence rate does not change as the gradiemtsrzase
in magnitude, although a finer grid is needed for comparable accuracy when the lay
are sharper. This result implies that solving practical three-dimensional problems requ
a sufficiently dense mesh to get meaningful results. The analytic and computed curr
agree favorably as seenin Fig. 4. Only the real parts are presented because, for this exa
both the conductivity and the electric fields are real.
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TABLE 2
Synthetic Problem with Uniform Grids: Errors in the Computed Jand V - A,
and Error Indicators 6A and ¢

# cells h h? # variables
8 .25 6.25e-2 4224
16° 125 1.56e-2 33280
32 .0625 3.9e-3 264192
Grid a M ISAIl sl v -Al 1831
8 5 2.2 2.6e-1 2.9e-1 1.3e-1 9.2e-2 2.1e-2 7.8e-1 9.3e-
16° 0.5 7 3.9e-1 3.2e-2 3.8e-2 3.6e-3 6.8e-3 5.1le-4 1.8e-1 1.3e-
32 12 7.8e-2 4.8e-3 9.3e-3 2.3e-3 2.4e-3 1.0e-4 1.0e-4 2.3e-
8 5 2.2 2.7e-1 3.3e-1 1.6e-1 4.8e-2 4.6e-3 7.5e-1 8.8e-:
16 1 7 3.8e-1 3.2e-2 4.0e-2 4.1e-3 3.6e-3 2.7e-4 1.9e-1 1.4e-
32 14 7.8e-2 4.8e-3 8.9e-3 1.8e-3 1.3e-3 5.6e-5 4.7e-2 2.3e-
8 8 3.4 3.2e-1 49 3.5 5.9e-2 4.2e-3 2.7e-1 2.6e-2
16° 10 11 2.7e-1 2.3e-2 2.6e-1 12e-1 3.2e-3 2.2e-4 9.5e-2 5.6e-
32 22 6.5e-2 4.0e-3 4.5e-2 1.0e-2 1.3e-3 4.7e-5 2.0e-2 8.2e-
8 8 16 2.3 20 5.6 2.4e-1 3.0e-2 2.3e-1 2.2e-1
16 100 12 9.0 6.9e-1 23 4.8 3.0e-1 2.8e-2 4.8e-1 2.6e-2
32 23 2.2 1.4e-1 2.2 2.0e-1 4.4e-1 2.3e-2 1.2e-1 8.5e-2

Note.The valueM is the number of iterations to convergence. Numbers in the left columns are measurec
Il - lo,» @nd in the right columns ifi - ||,. The number of cells, the mesh spaciagnd the number of unknown
variables are provided at the top.

osh w—1 J* Analytic
08 o o Je Computed
04+
02} a/10
0 o ooy oGO o
-0.2f 1 L 1 L L L 1 L 1 )
-1 -0.8 -0.6 -0.4 -0.2 o 0.2 0.4 0.6 0.8 1
r v J Analytic
o5l 0———=0 J¥ Compnted
m /10
OF & T— O O-T09 w L To——F 27
05 Il I 1 1 1 I 1 1 1 J
-1 -0.8 -0.6 -0.4 -0.2 0 02 0.4 0.8 0.8 1
ir g I Analytic
05k 0——0 J* Computed
a/10
oF & o oo % 7 ou—Y o W =
_0_5 1 1 1 L 1 1 1 1 1 ]
-1 -0.8 -0.6 -0.4 -0.2 0 02 0.4 06 0.8 1

FIG. 4. Synthetic problem: the real parts of computed curréntand the analytic currend,, through a
cross-section of the conductivity. ~
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T

Re(g)
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Rel(47)
a/10
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-1 -l
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FIG.5. Synthetic problem: the real parts of computed solutid@sdg through a cross-section of conducti-
vity 6.

Observe that of the error indicators in Table 2, the only true solution eribt.i¥he
measured norms fov - A, as well as the comparisons to the pseudo-analytical solutio
reflect the error in using a finite domain of unitlength, as well as discretization errors. Wh
a second-order improvement is observeti &sdecreased, we know that the discretization
error dominates the finite-domain error.

The results of Table 2 are obtained using uniform grids. In particular, no special effi
is made to cluster grid points in regions where the gradient of the conductivity is hig
as such, the conductivity is essentially discontinuous on the scale of the resolution of
uniform grids. The fact that we are able to obtain accurate solutions in spite of the prese
of discontinuities relates to our choice of formulation for the system of PDEs. The origir
field E has discontinuities in the normal direction across interfacesAbut, andJ do
not. Figure 5 illustrates this fact with a plot of a lineAfand¢ through the block of high
conductivity. Similar results are obtained in [24] (which u8gs a magnetostatic problem)
and in [20] (which use$l to handle discontinuities ia andE to handle discontinuities
in ).

Finally, asa increases, the Krylov space iterative methods require more iterations
converge. Even so, the number of iterations needed to reduce the relative residual nor
10-% is very small compared with those reported in [25] (which uses standard Krylov-ty,
methods and preconditioners).

For our second experiment, we compare the discretization (14) to the modification of
Yee discretization applied to the second-order system (2) (as described in Section 3.1)
contrast the number of BICGSTAB iterations and the corresponding number of operatit
(in gigaflops) needed to achieve a relative residual of 1sing each method. Since the
modified Yee method does not produce a diagonally dominant system, we use an S¢
preconditioner with parameter value 1 for both methods, even though this does not show



SIMULATION OF 3D ELECTROMAGNETIC PROBLEMS 167

TABLE 3
Comparison of (A, ¢) and E Formulations: Iteration Counts and Computational Work
to Solve the Synthetic Problem Using BICGSTAB with SSOR Preconditioning

# of iterations # of operations
® Grid (A, ¢) E (A, ¢) E
8 10 >10° 0.031 N/A
10° 16° 18 >10° 0.23 N/A
32 32 >10° 14 N/A
8 9 1542 0.029 2.1
1¢° 16° 26 2576 0.31 20
32 42 5631 18 1200

discretization (14) at its best for low frequencies. The test problem is the synthetic mode
uniform grids witha = 100. The results are summarized in Table 3. Table 3 demonstra
the rather substantial improvement that our method offers; at lower frequencibss
improvement is more pronounced.

Note that the convergence of the iterative solver for the Yee method is very slow becs
the source for this synthetic example is not divergence-free. The problem becomes n
severe when the frequeney is lower. Similar results were reported in [25] but not in
[22], because the latter considers only magnetic sources which, unlike electric ones,
divergence-free.

The grids in the first two experiments are uniform throughout the domain. Thus, for ath
experiment, we solve the synthetic problem on non-uniform grids that widen exponenti
towards the outer boundary. In one dimension, start with a uniform mesh on the intel
[—0.5, 0.5]. At each end of the full interval, append a subinterval 1.3 times wider the
the outermost subintervals. Repeat this process, padding the outside of the interval
the interval covers+1, 1]. Form a tensor-product grid in three dimensions from this non
uniform one-dimensional grid. This non-uniform grid allows us to avoid discretizing finel
in regions where the solution does not vary much. We solve the synthetic problem on vari
exponentially widening non-uniform meshes and record the results in Table 4. The res
in Table 4 indicate that the solution of (8b) is second-order accurate and that the numbe
iterations needed for convergence of the Krylov space methods is not affected significa
by the non-uniform grid.

The values for the discretization ®f- A appearing in Tables 2 and 4 are nonzero, unlike
in (17). This discrepancy is due to the finite-domain error, which causes (3b) to be o
approximately satisfied by the discretized PDE system, as well as the iteration error (
the Krylov iteration halts when the residual drops below a preset tolerance). Upon using
BCs (9) instead of (22), the values |p¥ - A| dropped significantly, depending now only
on the iteration tolerance; however, for the reported valuds, af andh, the error insJ
did not improve significantly.

We have also applied the method proposed in [1] to this synthetic moded. £dk, the
results are comparable in accuracy and iteration counts. In that case, the method of |
somewhat preferable, because the cost per iteration is cheaper and the discretization
not involve a staggered grid, which can simplify programming considerably. However,
a increases, the accuracy of the method in [1] deteriorates significantly, and the pre:
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TABLE 4
Synthetic Problem with Non-Uniform Grids: Errors in the Computed Jand Vv - A,
and Error Indicators 6A and 6¢

# cells h? # variables

8 6.25e-2 4224
14 1.56e-2 22344
24 3.9e-3 111744
48 8.6e-4 889344

Grid a M I8AIl sl IV -All [EA]

8 4 2.2 2.6e-1 2.9e-1 1.0e-1 9.2e-2 8.6e-3 7.8e-1 9.2e-z
14 0.5 6 3.9e-1 3.9e-2 3.8e-2 4.6e-3 6.8e-3 6.3e-4 1.8e-1 1.7e-
243 8 7.8e-2 7.2e-3 8.8e-3 2.3e-3 2.4e-3 1.6e-4 4.3e-2 3.5e-
48 21 1.5e-2 1.7e-3 6.3e-3 1.8e-3 5.3e-4 4.1e-5 8.7e-3 8.5e-

8 4 2.2 2.6e-1 3.3e-1 1.3e-1 4.8e-2 4.6e-3 7.5e-1 8.8e-z
14 1.0 6 3.9e-1 3.9e-2 4.1e-2 5.0e-3 3.6e-3 3.3e-4 1.9e-1 1.7e-
243 8 7.8e-2 7.2e-3 8.9e-3 2.0e-3 1.3e-3 8.3e-5 4.4e-2 3.4e-
48 23 1.5e-2 1.7e-3 3.8e-3 1.0e-3 2.8e-4 2.1e-5 8.7e-3 7.8e-

83 10 3.4 3.2e-1 4.2 2.6 5.9e-2 4.2e-3 2.8e-1 2.6e-2
14 10 13 2.8e-1 2.9e-2 2.6e-1 1.2e-1 3.2e-3 2.6e-4 9.6e-2 6.9e-
243 27 6.0e-2 5.8e-3 4.7e-2 1.3e-2 1.3e-3 7.2e-5 2.0e-2 1.2e-
48 31 1.4e-2 1.7e-3 1.5e-2 3.9e-3 3.3e-4 1.8e-5 4.2e-3 2.8e-

8 8 16 2.3 20 5.6 2.4e-1 3.0e-2 2.3e-1 2.2e-1
14 100 13 9.0 8.3e-1 23 5.6 3.0e-1 3.4e-2 4.8e-1 3.1e-2
24 21 2.2 2.1le-1 2.2 2.9e-1 4.4e-1 2.3e-2 le-1 8.4e-3
48 32 6.0e-1 5.7e-2 5.8e-1 9.1e-2 1l.4e-1 1.0e-2 3.3e-2 2.3e-

Note.The valueM is the number of iterations to convergence. Numbers in the left columns are measurec
Il - ll,» @and in the right columns iy - ||>. The number of cells, the mesh spachin the central region.5, .5],
and the number of unknown variables are provided at the top.

method becomes superior. F@e= 100, the method of [1] necessitates grid spacing tha
resolves the layers it 4ccurately before the solution error becomes adequately small. I
such high resolution grid is necessary for the discretization (14).

5.2. A Geophysical Test Problem

As a final test of our method, we compute the electric field at the surface of the earth «
to an incident plane wave. This is a basic computation required in a magnetotelluric (v
experiment [22]. The frequency is3B1z and we make the quasi-static assumption as in [1]
The conductivity structure is a block of high conductivity (10 S/m) in a low conductivit
background (0.01 S/m). The BCs (22) are applied, wgtk, y, 1000 = (1,0,0)" and
g(x, y, —1000 = (0, 0, 0)T. Thus, there is no source curreiitand the fields are driven by
the vertically incident plane wave. The goal is to find the electric field at the surface of t
earth for the given frequency. The conductivity model is plotted in Fig. 6.

We solve the forward modeling problem using an exponentially increasing grid, as
the second experiment of Section 5.1. Contour plots of the three components of the ele
field are presented in Fig. 7. The solution is obtained in 22 iterations. From solving t
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FIG.6. MT problem: a horizontal and a vertical cross-section ofjog
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FIG. 7. MT problem: contour plots of the computed soluti@®(E) at the air-earth interfacd(is scaled so
thatE(x, y, z=2000 = (1,0,0)7).
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problem on a large domain with various non-uniform grids, we observe that the numbel
iterations does not change significantly as longas$s |h « 1, whereh is the maximum
grid spacing. This condition essentially ensures that the dominant differential termsin (
remain dominant after discretization. In turn, the discrete system retains diagonal domine
as a consequence of the above bound.

The MT problem considered here does not admit a closed form solution. To ver
our solution, we computed the solution again using another codé [@B]ch solves the
first-order system of Maxwell's equations (1a, 1b) directly, with BCs imposeH.orhe
discrepancies between the two results are less than 5%. The results deviate most o
edges and corners of the block of high conductivity. This is expected due to the differen
in BCs applied in the two codes, as well as errors due to discretization and interpolatio

When the frequencw is increased, the diagonal blocks in (18) eventually lose thei
dominance. Correspondingly, the block ILU preconditioner loses efficiency. We have fou
an ILU-decomposition with a threshold applied to the entire system (18) to be a more rok
preconditioner in such circumstances.
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